Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
2.
J Pharmacol Exp Ther ; 379(1): 96-107, 2021 10.
Article in English | MEDLINE | ID: covidwho-1483965

ABSTRACT

In the wake of the COVID-19 pandemic, drug repurposing has been highlighted for rapid introduction of therapeutics. Proposed drugs with activity against SARS-CoV-2 include compounds with positive charges at physiologic pH, making them potential targets for the organic cation secretory transporters of kidney and liver, i.e., the basolateral organic cation transporters, OCT1 and OCT2; and the apical multidrug and toxin extruders, MATE1 and MATE2-K. We selected several compounds proposed to have in vitro activity against SARS-CoV-2 (chloroquine, hydroxychloroquine, quinacrine, tilorone, pyronaridine, cetylpyridinium, and miramistin) to test their interaction with OCT and MATE transporters. We used Bayesian machine learning models to generate predictions for each molecule with each transporter and also experimentally determined IC50 values for each compound against labeled substrate transport into CHO cells that stably expressed OCT2, MATE1, or MATE2-K using three structurally distinct substrates (atenolol, metformin and 1-methyl-4-phenylpyridinium) to assess the impact of substrate structure on inhibitory efficacy. For the OCTs substrate identity influenced IC50 values, although the effect was larger and more systematic for OCT2. In contrast, inhibition of MATE1-mediated transport was largely insensitive to substrate identity. Unlike MATE1, inhibition of MATE2-K was influenced, albeit modestly, by substrate identity. Maximum unbound plasma concentration/IC50 ratios were used to identify potential clinical DDI recommendations; all the compounds interacted with the OCT/MATE secretory pathway, most with sufficient avidity to represent potential DDI issues for secretion of cationic drugs. This should be considered when proposing cationic agents as repurposed antivirals. SIGNIFICANCE STATEMENT: Drugs proposed as potential COVID-19 therapeutics based on in vitro activity data against SARS-CoV-2 include compounds with positive charges at physiological pH, making them potential interactors with the OCT/MATE renal secretory pathway. We tested seven such molecules as inhibitors of OCT1/2 and MATE1/2-K. All the compounds blocked transport activity regardless of substrate used to monitor activity. Suggesting that plasma concentrations achieved by normal clinical application of the test agents could be expected to influence the pharmacokinetics of selected cationic drugs.


Subject(s)
Antiviral Agents/pharmacology , Organic Cation Transport Proteins/metabolism , SARS-CoV-2/drug effects , Animals , Benzalkonium Compounds/pharmacology , CHO Cells , Cetylpyridinium/pharmacology , Chloroquine/analogs & derivatives , Chloroquine/pharmacology , Cricetinae , Cricetulus , Naphthyridines/pharmacology , Organic Cation Transport Proteins/drug effects , Quinacrine/pharmacology , Tilorone/pharmacology
3.
Mol Pharmacol ; 100(6): 548-557, 2021 12.
Article in English | MEDLINE | ID: covidwho-1403004

ABSTRACT

Equilibrative nucleoside transporters (ENTs) are present at the blood-testis barrier (BTB), where they can facilitate antiviral drug disposition to eliminate a sanctuary site for viruses detectable in semen. The purpose of this study was to investigate ENT-drug interactions with three nucleoside analogs, remdesivir, molnupiravir, and molnupiravir's active metabolite, ß-d-N4-hydroxycytidine (EIDD-1931), and four non-nucleoside molecules repurposed as antivirals for coronavirus disease 2019 (COVID-19). The study used three-dimensional pharmacophores for ENT1 and ENT2 substrates and inhibitors and Bayesian machine learning models to identify potential interactions with these transporters. In vitro transport experiments demonstrated that remdesivir was the most potent inhibitor of ENT-mediated [3H]uridine uptake (ENT1 IC50: 39 µM; ENT2 IC50: 77 µM), followed by EIDD-1931 (ENT1 IC50: 259 µM; ENT2 IC50: 467 µM), whereas molnupiravir was a modest inhibitor (ENT1 IC50: 701 µM; ENT2 IC50: 851 µM). Other proposed antivirals failed to inhibit ENT-mediated [3H]uridine uptake below 1 mM. Remdesivir accumulation decreased in the presence of 6-S-[(4-nitrophenyl)methyl]-6-thioinosine (NBMPR) by 30% in ENT1 cells (P = 0.0248) and 27% in ENT2 cells (P = 0.0054). EIDD-1931 accumulation decreased in the presence of NBMPR by 77% in ENT1 cells (P = 0.0463) and by 64% in ENT2 cells (P = 0.0132), which supported computational predictions that both are ENT substrates that may be important for efficacy against COVID-19. NBMPR failed to decrease molnupiravir uptake, suggesting that ENT interaction is likely inhibitory. Our combined computational and in vitro data can be used to identify additional ENT-drug interactions to improve our understanding of drugs that can circumvent the BTB. SIGNIFICANCE STATEMENT: This study identified remdesivir and EIDD-1931 as substrates of equilibrative nucleoside transporters 1 and 2. This provides a potential mechanism for uptake of these drugs into cells and may be important for antiviral potential in the testes and other tissues expressing these transporters.


Subject(s)
Adenosine Monophosphate/analogs & derivatives , Alanine/analogs & derivatives , Antiviral Agents/metabolism , Cytidine/analogs & derivatives , Equilibrative Nucleoside Transporter 1/metabolism , Equilibrative-Nucleoside Transporter 2/metabolism , SARS-CoV-2/metabolism , Adenosine Monophosphate/administration & dosage , Adenosine Monophosphate/metabolism , Alanine/administration & dosage , Alanine/metabolism , Antiviral Agents/administration & dosage , COVID-19/metabolism , Cytidine/administration & dosage , Cytidine/metabolism , Dose-Response Relationship, Drug , Drug Interactions/physiology , HeLa Cells , Humans , Protein Binding/drug effects , Protein Binding/physiology , SARS-CoV-2/drug effects , COVID-19 Drug Treatment
4.
J Chem Inf Model ; 61(9): 4224-4235, 2021 09 27.
Article in English | MEDLINE | ID: covidwho-1356531

ABSTRACT

With the rapidly evolving SARS-CoV-2 variants of concern, there is an urgent need for the discovery of further treatments for the coronavirus disease (COVID-19). Drug repurposing is one of the most rapid strategies for addressing this need, and numerous compounds have already been selected for in vitro testing by several groups. These have led to a growing database of molecules with in vitro activity against the virus. Machine learning models can assist drug discovery through prediction of the best compounds based on previously published data. Herein, we have implemented several machine learning methods to develop predictive models from recent SARS-CoV-2 in vitro inhibition data and used them to prioritize additional FDA-approved compounds for in vitro testing selected from our in-house compound library. From the compounds predicted with a Bayesian machine learning model, lumefantrine, an antimalarial was selected for testing and showed limited antiviral activity in cell-based assays while demonstrating binding (Kd 259 nM) to the spike protein using microscale thermophoresis. Several other compounds which we prioritized have since been tested by others and were also found to be active in vitro. This combined machine learning and in vitro testing approach can be expanded to virtually screen available molecules with predicted activity against SARS-CoV-2 reference WIV04 strain and circulating variants of concern. In the process of this work, we have created multiple iterations of machine learning models that can be used as a prioritization tool for SARS-CoV-2 antiviral drug discovery programs. The very latest model for SARS-CoV-2 with over 500 compounds is now freely available at www.assaycentral.org.


Subject(s)
COVID-19 , SARS-CoV-2 , Bayes Theorem , Humans , Machine Learning , Molecular Docking Simulation
5.
J Chem Inf Model ; 61(6): 2641-2647, 2021 06 28.
Article in English | MEDLINE | ID: covidwho-1241784

ABSTRACT

The growing quantity of public and private data sets focused on small molecules screened against biological targets or whole organisms provides a wealth of drug discovery relevant data. This is matched by the availability of machine learning algorithms such as Support Vector Machines (SVM) and Deep Neural Networks (DNN) that are computationally expensive to perform on very large data sets with thousands of molecular descriptors. Quantum computer (QC) algorithms have been proposed to offer an approach to accelerate quantum machine learning over classical computer (CC) algorithms, however with significant limitations. In the case of cheminformatics, which is widely used in drug discovery, one of the challenges to overcome is the need for compression of large numbers of molecular descriptors for use on a QC. Here, we show how to achieve compression with data sets using hundreds of molecules (SARS-CoV-2) to hundreds of thousands of molecules (whole cell screening data sets for plague and M. tuberculosis) with SVM and the data reuploading classifier (a DNN equivalent algorithm) on a QC benchmarked against CC and hybrid approaches. This study illustrates the steps needed in order to be "quantum computer ready" in order to apply quantum computing to drug discovery and to provide the foundation on which to build this field.


Subject(s)
COVID-19 , Drug Discovery , Algorithms , Computing Methodologies , Humans , Machine Learning , Quantum Theory , SARS-CoV-2 , Support Vector Machine
6.
Eur J Med Chem ; 211: 113014, 2021 Feb 05.
Article in English | MEDLINE | ID: covidwho-918799

ABSTRACT

Viruses are obligate intracellular parasites and have evolved to enter the host cell. To gain access they come into contact with the host cell through an initial adhesion, and some viruses from different genus may use heparan sulfate proteoglycans for it. The successful inhibition of this early event of the infection by synthetic molecules has always been an attractive target for medicinal chemists. Numerous reports have yielded insights into the function of compounds based on the dispirotripiperazine scaffold. Analysis suggests that this is a structural requirement for inhibiting the interactions between viruses and cell-surface heparan sulfate proteoglycans, thus preventing virus entry and replication. This review summarizes our current knowledge about the early history of development, synthesis, structure-activity relationships and antiviral evaluation of dispirotripiperazine-based compounds and where they are going in the future.


Subject(s)
Antiviral Agents/pharmacology , Drug Design , Piperazines/pharmacology , Spiro Compounds/pharmacology , Viruses/drug effects , Antiviral Agents/chemistry , Heparan Sulfate Proteoglycans/antagonists & inhibitors , Heparan Sulfate Proteoglycans/metabolism , Molecular Structure , Piperazines/chemistry , Spiro Compounds/chemistry , Viruses/metabolism
7.
Drug Discov Today ; 25(5): 928-941, 2020 05.
Article in English | MEDLINE | ID: covidwho-72302

ABSTRACT

In the past decade we have seen two major Ebola virus outbreaks in Africa, the Zika virus in Brazil and the Americas and the current pandemic of coronavirus disease (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). There is a strong sense of déjà vu because there are still no effective treatments. In the COVID-19 pandemic, despite being a new virus, there are already drugs suggested as active in in vitro assays that are being repurposed in clinical trials. Promising SARS-CoV-2 viral targets and computational approaches are described and discussed. Here, we propose, based on open antiviral drug discovery approaches for previous outbreaks, that there could still be gaps in our approach to drug discovery.


Subject(s)
Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Betacoronavirus/drug effects , Coronavirus Infections/drug therapy , Drug Discovery , Pneumonia, Viral/drug therapy , Angiotensin-Converting Enzyme 2 , Animals , Betacoronavirus/metabolism , COVID-19 , Chlorocebus aethiops , Computer Simulation , Drug Repositioning , Hemorrhagic Fever, Ebola/drug therapy , Humans , In Vitro Techniques , Middle East Respiratory Syndrome Coronavirus , Molecular Docking Simulation , Pandemics , Peptidyl-Dipeptidase A/metabolism , Severe acute respiratory syndrome-related coronavirus , SARS-CoV-2 , Severe Acute Respiratory Syndrome/drug therapy , Spike Glycoprotein, Coronavirus/metabolism , Vero Cells , Zika Virus Infection/drug therapy , COVID-19 Drug Treatment
SELECTION OF CITATIONS
SEARCH DETAIL